What’s the Difference Between Meteors, Meteorites and Meteoroids?

Meteoroid Meteor Meteorite Differences

Have you ever seen a shooting star or a streak of light at night? If so, this may not have been a star at all. Instead, you witnessed a meteor burning up in the Earth’s atmosphere.

So what’s the difference between meteors, meteoroids and meteorites? It turns out that it’s all about their location:

  • Meteoroids are far up in the sky.
  • Meteorites have already landed on Earth.
  • Meteors are falling down to Earth streaking light when they break down in the atmosphere.

So they start as a meteoroid in the sky. Then, they fall as a meteor flashing light. Next, when it lands on Earth, we call it a meteorite.

1 Meteoroids are still up in outer space

Meteoroid Differences

In terms of location, meteoroids are way out in our solar system. These stony or metallic debris travel through outer space – some directed to Earth. Meteoroids are smaller than asteroids and contain less water and ice than comets.

Because meteoroids are in the solar system, they can interfere with spacecraft operations. This is why NASA’s Meteoroid Environment Office (MEO) considers the risk of meteoroids beyond Earth’s orbit.

As mentioned before, it’s a meteoroid until it starts plunging into Earth’s atmosphere. At this point where meteoroids enter the atmosphere, they become meteors or “shooting stars”.

2 Meteors break down in our atmosphere

Meteor Differences

When you observe a meteor shower in the sky, these are meteors burning up in Earth’s atmosphere. During a meteor shower, we often call meteors “shooting stars”.

Meteors flash light through the sky because of Earth’s atmosphere. They often leave a tail behind them in the direction they are traveling in.

After all, meteor showers are among the most beautiful sites we can observe in our night’s sky.

Most meteors never make it to the Earth and break down in the atmosphere. But the ones that reach the ground, we call them “meteorites”.

3 Meteorites reach the ground

Meteorite Differences

You already know that meteorites make it all the way down to Earth. For example, the Barringer Crater in Arizona is an old artifact from a stony meteorite. Stony meteors like this one are the most abundant. We know this from all the meteorites that we count in the ice of Antarctica.

When you look at the moon, you can see all the impacts from meteors. Back in primeval days, Earth had the same number of meteor impacts. So why can we see so many meteors on the moon but not on Earth?

One one of the key differences is how much water we have on Earth. Because the Earth is mostly water, we don’t see a lot of the meteorites that reach the Earth. But how about ones that crash on land? Over the years, weathering, erosion and mass wasting has erased many craters, mountains and terrain on Earth.

Still wanna learn more about meteors?

Check out these hand-picked sources that will help enhance your knowledge on these old solar system remnants:

  • Earth Age: How Old is Earth?
    By dating meteorites, we find the oldest rocks are 4.5 billion or so years old. Scientists collect these fallen rocks in Antarctica because they’re easier to find in the ice and snow.
  • Atmosphere Layers: Troposphere, Stratosphere, Mesosphere and Thermosphere
    Meteors can pass through the exosphere and thermosphere without much trouble. But the mesosphere is the atmospheric layer that protects Earth from large meteoroids. The friction within this layer causes meteors to burn up.
  • How to Build a Real Planet
    About 25,000,000 meteors enter the Earth’s atmosphere every day. We’ve found over well-over 50,000 meteorites that have reached Earth so far. They are remnants when all the planets were forming.
  • Solar System Facts: A Guide to Our Planetary System
    All planets revolve around the sun in a solar ecliptic. They travel along the same plane counterclockwise. This is true for meteors and comets as well.
  • Be the first to comment

    Leave a Reply

    Your email address will not be published.